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ABSTRACT 

In this paper, we present the theory of dual integral equations 

for steady state heat,conduction. There are four kernel functions 

with different orders of singularity in the two equations. Using 

the first equation with weaker singularity, the conventional direct 

boundary integral equation method (BIEM) was proposed long ago. An 

important characteristics of the first equation is that its kernels 

are of the Riemann and Cauchy types. The purpose of this paper is to 

present a method based on the second equation with stronger 

singularity kernels to solve the steady state heat conduction 

problems. Whereas the kernels of the second equation are of the 

Cauchy and Hadamard types. It is further shown that comb&nation of 

the two equations can be used to solve problems with degenerate 

boundary which have long suffered from lack of a general 

formulation of the BIEM. For concreteness, an illustrative example 

is performed numerically to see the validity of the theory. 

INTRODUCTION 

The boundary integral equation method(BIEM) has been developed 

and applied quite successfully in various engineering problems 

such as in elasticity [l] and euoustics. Several attempts have 

been made for analysis of heat conduction in steady and nonsteady 

states [2,3,4]. But most BIEM literatures are on solving problems 

with simply-connected domain by evaluating the Riemann and Cauchy 

principal values. In this paper, we present a new application of 

superstrong singularity in the boundary element formulation. It is 

especially useful for those problems with degenerate boundary 

which may be a flux-guiding baffle, a heat-generating fLn, or a 
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nearly-insulating defect. In the conventional boundary element 

formulation, an artificial boundary was introduced to solve the 

problems [5] and it is known as the zone method. In fact, on the 

degenerate boundary, the numbers of unknown and prescribed boundary 

conditions are both doubled, therefore it is obvious that the 

number of independent equations should be doubled in order to 

accommodate the increasing known boundary data and to secure a 

unique solution. It is the reason why our dual equation8 work and 

no artificial boundaries are needed in our method. The superstrong 

einm1s.rit.y application in fracture mechanics and potential flow was 

developed by the authors [6,7,8,9,101. In this paper we adopt the 

theory to the steady state heat conduction problem. First, we 

derive the second equation.by applying the normal differential 

operator to Green's second identity, and thin obtain the higher 

singularity boundary integral equation by pushing the point to the 

boundary. The two equations are called collectively dual boundary 

integral equations. They are described by means of the usual 

finite element technique. The alleged supersingularity can be 

explained by the concept of the Hadamard principal value [lo]; 

although Hadamard [ll] didn't treat exactly the same problem; 

similarities do exist, however. 

INTEGRAL EQIJATION FORMULATION 

Consider the problem of the heat conduction In a homogeneous, 

isotropic medium with the governing equation 

au 
= kV*u ____________________~~~~~~~~~ (1) 

at 

where u is the temperature, k is diffusity, and V'denotes the 

Laplacian operator. The boundary and initial condition8 are 

B.C. Temperature u=u 

au 
Normal flux k ---a- n C- 

3n / C' s 

Convection k aU -=-h(u- 
an 

Fig.1 The considered 

I.C. u(x,O) = u,(x) 

where h is the heat transfer coefficient, u is the 
+ 

Domain 
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temperature of the surrounding medium, and n is the unit vector 

normal to the boundary and pointing out of the domain. For steady 

state,a/af= 0 , Eq.(l) reduces to the Laplace equation: 

V’u = 0. _-_~__~~~~____________________3_______ (2) 

Consider a multi-connected regton D (Fig.1) which is bounded by a 

regular boundary S and a degenerate boundary C = CC+ C", which 

may be a baffle for quiding heat flow, a generating fin, or 

a defect-crack with little conductivity. The regular boundary S and 

the degenerate boundary C comprise the total boundary B - S + C of 

the domain D. An approprLate boundary conditfon must be prescribed 

everywhere on the boundary S + C; the boundary condition may be the 

temperature, normal flux, or convection types. It Ls noted that on 

the degenerate boundary C = C*+ C< boundary conditions should be 

imposed on both C*and C; and the conditions imposed can be of 

different types. For the aforementioned problem a boundary integral 

equation can be obtained from Green's second identity [S] as 

2 A u(x) -JBT(s,x) 

where t(s) -au /an , and 

u(s) dB(s) -J U(s,x> t(s) dB(s) --(3) 
B 

u(x) is the temperature of the point x Ln 

the domain D bounded by the boundary B and, for the two-dimensional 

case, 

U(s,x) = In(r) _____~_~~__~_~*_~___~~~~*~~~~~~~~~~~~~* (4) 

T(s,x) 
a 

= - In(r) -~~_*_*_______~_*_~_-~~~~~~~~~~~~ 
ans 

(5) 

in which r is the distance between the points s and x, and nsis the 

outer unit normal to the boundary at the point s. After performing 

a normal differentiation to the above equation, the other equatton 

emerges : 

2 72 t(x) = J .M(s,x) u(s) dB(s) - f L(s,x) t(s) dB(s) --(6) 
B B 

where L(s,x) = @ U(s,x)/an;, -_________________________ (7) 

M(s,x) = QT(s,x)/an* _____________________~~~~_ (8) 

in which n&is the outer unit normal to the boundary at the point x. 

Eqs.(3) and (6) are called herein the dual integral equations for 

the domain point x. In order to get a compatible relationship for 

the boundary unknowns, the point x of Eqs.(3) and (6) has to be on 

the boundary. This might induce the problem of singularity. 

Analogous to the treatment of complex contour integral involving 

poles, the boundary is detoured circularly or spherically around the 
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point x of singularity and then shrinked back to the point. In this 

way the strong singularity of Cauchy kernel T(s,x) and L(s,x) leads 

to a Cauchy principal value and a jump term. Another superstrong 

singularity M(s,x) results In the interpretation of the Hadamard 

principal value. Accordingly, Eqs.(3) and (6) become 

x u(x) = R.P.V.JBT(s,x) u(s) dB(s) - C.P.V.&(s,x) t(s) dB(s) (9) 

T[ t(x) = C.P.V.&M(s,x) u(s) dB(s) - H.P.V.JaL(s,x) t(s) dB(s) (10) 

where R.P.V., C.P.V. and H.P.V. denote the Riemann , Cauchy and 

Hadamard principal values, respectively. We call the above equations 

dual boundary integral equations. After considering the degenerate 

boundary B = S + C'tC; we can derive the following general 

equations. 

For x on the S boundary, 

x u(x) = R.P.V.<T(s,x) u(s) dB(s) - C.P.V.s,U(s,x) t(s) dB(s) 

+ J+'T(s,x) Z u(s) dB(s) - SC U(s,x) At(s) dB(s) (11) 

n t(x) = C.P.V.$M(s,x) u(s) dB(s) - H.P.V sL(s,x) t(s) dB(s) 

+ jOM(s,x) E u(s) dB(s) - so.L(s,x) Alt(s) dB(s) (12) 

For x on C boundary, 

x Zu(x) = J,T(s,x) u(s) dB(s) - s,U(s,x) t(s) dB(s) 

+ R.P.V.$T(s,x) Z u(s) dB(s) - C.P.V+l(s,x) At(s) dB(s)(l3) 

n At(x) = s M(s,x) u(s) dB(s) - <L(s,x) t(s) dB(s) 

+ C.P.V.$M(s,x) C u(s) dB(s) - H.P.V.$ L(s,x) At(s) dB(s)(l4) 

where AU(X) = u(xot) - u(x.-) At(x) = t(x.') - t(x.-) 

Zu(x) = u(x.') + u(x.-) Ct(xl = t(x0') + t(x.-) 

With Eqs.(ll), (12), (13) and (14') obtained, it is sufficient to 

secure a unique solution. 

NUMERICAL IMPLEMENTATION 

For the numerical solution of Eqs.(ll), (12),(13) and (14) the 

boundary S and C is divided into a series of constant boundary 

elements. In real calculation, we evaluate the following 

coefficients for constant element, 
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WIJ - s M(sr,x~) dB(s,) UJ TlJ - ! T(s, ,x1) dB(s,) UJ 
11, - .f L(SJ,XI) dB(sj) a~r/@n,U~r _ S U(SJ.XI) dB(sr) Qu,/Sn . 

we combine the two algebraic equation Mu, = L_t and Tu * U& to solve 

for the boundary unknowns. After we have all the boundary data, the 

temperature and heat flux at any interior point can be evaluated 

by Eqs.(3) and (6). 

RESULTS AND DISCUSSION 

Consider the problem as in Fig.2 with degenerate boundary. The 

boundary condition is also shown in Fig.2. Using 30 elements 

on the regular boundary and 5 elements on the degenerate boundary 

as the mesh shown in Fig.2. Fig.3 shows the temperature contour and 

Fig.2 The illustrative example 
and the BEM mesh. 

Fig.3 Temperature contour. 

______... .-------- 
______... I..*----- 

-______\\ I,-,----- 

----..-.,\ I,,. * ___- 

----““\ 
-e-P_ 

-----____ 

___I_____ ___*__--- 

-_-_- --e-e---- 

Fig.4 Temperature gradient Fig.5 NASTRAN FEM mesh. 

Fig.4 the heat flux distribution. In order to see the validity of the 

present theory a NASTRAN FEM mesh is also presented in Fig.5. For 

further comparison a result obtained from a scheme based on the 

Schwarz-Christoffel transformation [5] is also shown in Fig.4. Note 

that in the vicinity of the tip where singularity is expected and 

most schemes suffer much there the agreement between solutions of 

the present theory and the Schwarz-Christoffel transformation 

solution is remarkable. 
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CONCLUSION 

The dual boundary integral equations have been derived to give 

a complete description of the compatible relation of the boundary 

data (temperature and normal flux). The singularity problem has been 

solved by a careful derivation which leads naturally to a convergent 

formulation. The formulation is written in compact form since the 

notions and notations of the Cauchy and Hadamard principal values 

are taken advantage of, as was done Ln the present work. The 

adoptton of the derived dual equatlons to the boundary element 

method has resulted Ln a powerful numerical scheme suitable for 

solution of a wide class of problems. For illustration we have 

presented one numerical example, the results of which were found 

encouraging. By the same algorithm, one can apply the theory to 

transient heat conduction problems except for different kernels and 

an additional time integration has to be utilized.It is obvious that 

the present method, based on the second equation, is particularly 

suitable for the problem of extremely localized and concentrated 

heat flux. 
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